If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-5p^2+50-9=0
We add all the numbers together, and all the variables
-5p^2+41=0
a = -5; b = 0; c = +41;
Δ = b2-4ac
Δ = 02-4·(-5)·41
Δ = 820
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{820}=\sqrt{4*205}=\sqrt{4}*\sqrt{205}=2\sqrt{205}$$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{205}}{2*-5}=\frac{0-2\sqrt{205}}{-10} =-\frac{2\sqrt{205}}{-10} =-\frac{\sqrt{205}}{-5} $$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{205}}{2*-5}=\frac{0+2\sqrt{205}}{-10} =\frac{2\sqrt{205}}{-10} =\frac{\sqrt{205}}{-5} $
| 3y-8=35 | | b=2.5b+45 | | 2(4r+6)=2/3(12r+18) | | 180=90+x | | 66=3x+3(-2x+116) | | 2(4r+6)=(2)/(3)(12r+18) | | 5/2x+1/2x=121/2+7/2 | | 2(3a+2)-(3a+5)+3=12+3(2a-1)-2a | | 3+m+2m=57 | | 32=-y/9 | | 5r=-9−4r | | -7a+4a=9 | | R-7(4-3r)=-92 | | -3y/5-8=-y | | 7u=10u−9 | | 1x+0=2x+9 | | -29=a-18 | | 2^9x+2=16^5x−2 | | 12=7+r | | 29x+2=165x−2 | | -84=-4(5-2v) | | 5.7g+5=2.7g+11. | | -26=-2p | | 7=10−3q | | B^2+b-5=1 | | 8(4x+3)=152 | | 3.2g+4=1.2g+8. | | 15x-1=2(5x-2)+8 | | K^2-19k+20=-64 | | 21.8=3n-2 | | x5.2=-18.73 | | 10x+5-3x=26 |